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Abstract. In an ironic twist of history, modern psychological testing has returned to an adaptive format quite common when testing was
not yet standardized. Important stimuli to the renewed interest in adaptive testing have been the development of item-response theory in
psychometrics, which models the responses on test items using separate parameters for the items and test takers, and the use of computers
in test administration, which enables us to estimate the parameter for a test taker and select the items in real time. This article reviews a
selection from the latest developments in the technology of adaptive testing, such as constrained adaptive item selection, adaptive testing
using rule-based item generation, multidimensional adaptive testing, adaptive use of test batteries, and the use of response times in
adaptive testing.
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The idea of adapting a test to the ability level of the indi-
vidual test taker is as old as testing itself. Prototypes of this
adaptation are the oral examination in education and the
individual diagnostic interview in psychology. Ever since
the first oral examinations have been conducted, examiners
are aware of the fact that it would be a waste of time to ask
examinees questions that are too difficult or too easy. When
an examinee produces plainly wrong answers to a series of
difficult questions, each examiner will resort to easier ques-
tions until their level of difficulty leads to uncertainty as to
whether the next answer will be right or wrong. The reverse
strategy will be followed if the examinee produces a series
of perfect answers. Any sensitive psychologist involved in
individual diagnosis or informal testing will follow com-
parable principles.

These examiners and psychologists must have had ideas
about the difficulties of their test items and how to account
for them when scoring or classifying test takers. Otherwise,
they would simply have been unable to do their jobs. In
hindsight, we could even argue that these ideas must have
functioned as intuitive versions of the later item-response
models, which organized their quantitative impressions of
the items and test takers and guided them in the selection
of the former as well as the scoring of the latter.

The idea of adapting a test to the level of the test taker
was ingrained so deeply in the practice of examination and
psychological diagnosis that it was automatically adaptive
when more formal psychological testing was introduced.
The prime example is the first intelligence test constructed
by Binet in the beginning of the 20th century. In spite of its
thorough standardization, this test was fully adaptive; its
protocol contained precise descriptions as to how to select
the next item for a test taker as a function of his or her
previous responses (Binet & Simon, 1905). This pioneer

must thus have been convinced that for a test to be stan-
dardized it was unnecessary to give each test taker the same
selection of items – only that they be subjected to identical
rules of item selection.

Although the Binet intelligence test has been generally
hailed as the first standardized test in the history of psycho-
logical testing, this author believes that the major innova-
tion by Binet was not the standardization – the methodo-
logical necessity of it was already fully accepted in German
experimental psychology in the 19th century – but the re-
placement of the intuitive response models of his predeces-
sors by explicit scaling of the test items and test takers. As
is well known, Binet used chronological age as a scale for
intelligence, extensively pretested his items to estimate
their position on this scale, and scored his test takers by
estimating their position on the same scale, which he re-
ferred to as their mental age. It was no coincidence that
Thurstone, in the very first article on the statistical aspects
of scaling in 1925, used a data set for the Binet intelligence
test to demonstrate his new scaling model.

But by the time Thurstone began his work on scaling, ed-
ucational and psychological testing had already been greatly
influenced by the invention of paper-and-pencil, group-based
testing as the result of the necessity to test large numbers of
conscripts in the United States during mobilization in World
War I (DuBois, 1970). The same format of group-based test-
ing, with an identical linear test form for each candidate and
the use of observed-score equating to maintain comparability
of scores over time, soon became popular in testing for col-
lege admission as well. Although efficient to administer for
the testing agency, this format does not permit any adaptation.
As a matter of fact, it even led to loss of efficiency for the test
takers because of the waste of their time by including items
in the test that were too easy or too difficult for them.
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We had to wait for two new developments before adap-
tive testing returned. The first was the introduction of what
is now known as item-response theory (IRT). There is a
direct line of descent between IRT and Thurstone’s work
but he eventually became more interested in the scaling of
objects than the measurement of persons. A key feature of
IRT modeling is its explanation of the probability distribu-
tion of the responses on a test item by separate parameters
for the ability of the test taker and the relevant features of
the item. One of the early examples of an IRT model is that
by Rasch (1960), which has exactly one ability parameter
and one parameter for the difficulty of the item. The model
assumes that the probability of a correct response Ui by a
test taker on an item can be written as

(1)

where ® is the ability parameter for the test taker and bi the
difficulty parameter of item i. When the items in a test have
been calibrated using pretest data (i.e., their difficulty param-
eters have been estimated with enough precision to treat them
as known), the estimates of the ability parameter from the test
takers’ responses are automatically adjusted for the difficul-
ties of the items used in the test. This feature permits the use
of any selection of items from a calibrated pool as a test with-
out loosing the comparability of their scores and, therefore,
makes adaptive selection of test items possible.

In adaptive item selection, the test begins with an initial
estimate of the ability parameter, θ̂0. The next item is then
selected to be optimal at θ̂0 and the response to it is used
to re-estimate the ability, that is, calculate an estimate θ̂1.
The procedure is then repeated again, and the result is a
new estimate θ̂2, and so forth. For the model in (1), an ob-
vious procedure is to select each next item so that it has a
difficulty parameter bi as closely as possible to the current
estimate of ®. For the more flexible models typically used
in educational testing, this criterion is not appropriate. One
popular criterion is the use of Fisher’s information measure
in statistics as an item information function, I(®). We dem-
onstrate its use only graphically. Figure 1 shows the selec-
tion of the first three items in an adaptive test (top to bot-
tom). Each next item is selected to have its peak as closely
as possible to the last estimate of ®. Item information func-
tions have the advantage of being additive; that is, the test
information function is just the sum of the information
functions of its items. As shown in Figure 1, even after as
few as three items, the test information function already
reveals a tendency to become peaked over a small area of
the ability scale. For the mainstream IRT models used in
testing, it can be proven that the location of the peak con-
verges to the test taker’s true ability.

The second development that led to the reintroduction
of adaptive testing was the availability of computers with
ample computational power. When these became afford-
able in the second half of the 1980s, they were immediately
used for test administration. Their power has enabled the
testing industry to estimate the ® parameters of test takers

in statistically sophisticated ways and to select items opti-
mally at the estimates from large pools of items in real time.

This does not mean that there were no earlier attempts
at adaptive testing. David Weiss did his pioneering work
on adaptive testing at the University of Minnesota in the
1970s on a mainframe computer. Others tried to simplify
the necessary estimation and item-selection procedures.
For example, Lord (1970) studied a simple up-and-down
method of item selection that had his roots in the Robbins-

Figure 1. Graphical example of the selection of the first
three items in an adaptive test using the information func-
tions of the items in the pool.
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Monro technique for stochastic approximation developed
for other applications in statistics. He also developed paper
versions of adaptive tests in the form of multi-stage tests
and an ingenious flexilevel test for which the test takers had
to scratch their answer sheets to find the next item (Lord,
1980, chaps. 8–9).

The first large-scale applications of adaptive testing
were launched in the mid-1990s. Surprisingly, none of the
applications were in psychological testing but in such areas
as university admission, job certification, and placement in
the military. However, because of the large scale of these
applications and the high security of their nature, test spe-
cialists soon became aware of the fact that their original
ideas about adaptive testing had been rather naive and its
implementation involved much more than just picking the
best items from a pool one at a time. In fact, these early
experiences opened up the eyes to a whole array of chal-
lenging new problems.

For example, just like standardized linear tests, adaptive
tests have to meet extensive sets of specifications to main-
tain their validity. These are not only content specifications
but also rules with respect to the degree of speededness of
the test, the exclusion of items that are too close to each
other, the frequency of item reusage, and so forth. Such
specifications have to be imposed while selecting items se-
quentially in real time – a situation differing fundamentally
from the mixing and matching that is possible in manual
test assembly. As we will see below, the consequence is a
complicated constrained sequential optimization problem
with large numbers of constraints.

Also, adaptive testing is usually adopted in combination
with testing schedules that allow candidates to show up
when they are ready to take the test (walk-in testing). Such
continuous testing service is valuable but places a heavy
demand on the security of the testing material, especially
because adaptive testing tends to capitalize on a small set
of best items in the pool and to ignore the others. This fea-
ture has a serious price in the form of additional security
measures that are necessary to protect this subset and to
write and pretest massive numbers of items to replenish the
item pool frequently.

The last example has to do with the timing of the test.
Continuous testing is mostly offered in the form of time
slots of fixed length for which candidates sign up. But test
items usually vary considerably in the time they take; in
educational testing, differences by a factor of five or more
are quite common. Therefore, it did not take too long to
discover that on adaptive tests the more able test takers
sometimes run out of time. The reason for this differential
speededness is the positive correlation between the diffi-
culty of the test items and their time intensity. As a result,
the algorithm tends to give the more time-intensive items
to the more able test takers. On the other hand, in adaptive
testing, the response times are automatically recorded.
They can be used not only to fix this problem but even to
increase the efficiency of the test beyond what is possible
on the basis of the responses only.

The review of adaptive testing research in the next sec-
tions reports on these and other topics. The selection of
these topics is strongly biased by the author’s own research
agenda and certainly not exhaustive. For instance, we do
not touch on any of the topics in the other contributions to
this special issue. Also, the review is not technical and,
therefore, misses critical aspects of the developments.
Readers with a more technical interest in adaptive testing
are referred to a recent review by van der Linden and Glas
(2007), which addresses several of the same topics but
deals with their statistical aspects only.

Constrained Adaptive Testing

Even though the imposition of content specifications on the
selection of items from a calibrated pool seems superfluous
from a psychometric perspective, important validity rea-
sons exist to do so on adaptive tests, especially when they
test knowledge and skills that are the result of learning.
Otherwise, if test takers found out that the item selection
tends to favor certain content areas and ignores others, they
might change their learning and, hence, invalidate the item
calibrations. In addition to the content specifications, adap-
tive tests usually have to satisfy numerous other conditions,
some also related to their validity but others just practical.
Rather than using ad hoc modifications of the algorithm to
deal with these specifications individually, we should be
interested in a general approach that can be trusted for any
type of test specification.

Key to the development of such an approach is the no-
tion of a test specification as a constraint on the selection
of the items by the algorithm. Its adoption implies that we
can treat adaptive testing as an instance of constrained
combinatorial optimization; that is, a problem in which we
pick an optimal combination of items from the pool that
has to meet a well-defined set of constraints. However, un-
like regular constrained combinatorial optimization, the
combination has to be found sequentially, each time updat-
ing the objective function that is to be optimized – in Figure
1: The information about Þ in the test – once a new item is
picked.

The sequential nature of the problem prevents us from
any backtracking – that is, undoing the choice of an earlier
item if it appears to lead to a solution that is suboptimal or
even infeasible because some of the constraints have to be
violated later in the test. Backtracking is typical of algo-
rithms for the solution of regular combinatorial optimiza-
tion problems (e.g., a branch-and-bound algorithm). When
backtracking is impossible, the only approach left is to look
ahead and project the consequences of each step. This al-
ternative is followed in the shadow-test approach to adap-
tive testing (van der Linden, 2000; 2005, chap. 9; van der
Linden & Reese, 1998).

The approach is summarized in the following pseudo-
algorithm:
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– Select a full test that meets all constraints and is optimal
at the initial ability estimate θ̂0;

– Pick the best item from this test for administration;
– Record the response and calculate the new ability esti-

mate θ̂1;
– Reassemble the full test from Step 1 to be optimal at

θ̂1 while still meeting all constraints and fixing the item
that has already been administered;

– Repeat Step 2–4 until the adaptive test is completed.

The full tests that are (re)assembled are shadow tests; they
are never seen by the test taker, but only serve as an inter-
mediate step in the selection of the items for the adaptive
test (see Figure 2). Because each shadow test meets all of
the constraints, the adaptive test automatically meets them.
Likewise, because each shadow test is optimal and its best
item is always used, the adaptive test taken is optimal given
the set of constraints.

An ideal way of implementing a shadow-test approach
is through 0–1 integer programming. In this technique, the
objective function and the constraints are modeled using
0–1 variables for the selection of the items, whereupon the
model is solved for its optimum. Software programs with
powerful solvers for 0–1 problems are available in most
commercial optimization packages. A catalog of examples
of how to formulate test specifications as constraints using
0–1 variables is given in van der Linden (2005). For a typ-
ical adaptive testing problem with hundreds of constraints
and a well-implemented solver, it takes no more than a split
second to calculate the next shadow test. Also, the best item
is selected much faster than in unconstrained adaptive test-
ing because it is picked no longer from the entire pool but
from the free items in the shadow test.

The shadow-test approach is somewhat counterintui-
tive; rather than picking the best item from the pool, its
first step is the assembly of a traditional linear test. But
it has been demonstrated to work excellently in a series
of recent studies with such applications as highly con-

strained real-world tests (van der Linden & Reese, 1998),
constraints that control the degree of speededness of the
individual test administrations (van der Linden, 2008a;
van der Linden, Scrams, & Schnipke, 1999), constraints
that keep the exposure rates of the test items in the pool
below given security levels (van der Linden & Veldkamp,
2004, 2007), as well as constraints that stratify the test
with respect to its item-discrimination parameters (= α-
stratification) to prevent suboptimal selection of items
early in the test because of large errors in the estimates
of Þ (van der Linden & Chang, 2003). An unorthodox
application of the shadow-test approach to adaptive test-
ing is to create number-correct scores on the adaptive test
that are automatically equated to those on a linear refer-
ence test used for score reporting (van der Linden, 2001).

Adaptive Testing with Rule-Based
Item Generation

In the traditional linear format of testing, new items are
written and pretested for a single test form each time the
previous form has become obsolete. But each new version
of an adaptive test requires the replacement of a full item
pool. If candidates can take the adaptive test continuously
and the security risks are high, the replacement of the pool
will draw heavily on the resources of the testing agency
and item writers may easily run out of ideas for new but
equivalent test items.

One of the earlier solutions to this problem was using
item-exposure control techniques to better exploit the item
pool. Although, they were originally invented to avoid the
risk of item compromise by reducing the exposure rates of
the popular items in the pool (Sympson & Hetter, 1985), it
was soon recognized that the same techniques have a pos-
itive impact on the rates of items in the pool that normally
tend to be hardly used (Chang & Ying, 1999). Of course,
such applications only work satisfactorily when all items
in the pool are of high quality.

A more fundamental approach to the problem is to look
into the possibility of mass production of high-quality
items by computer algorithms. Ideas for rule-based item
generation were already explored in the 1960s, mainly for
use in domain-referenced testing (e.g., Hively, Patterson,
& Page, 1968; Osburn, 1968). The possibilities to comput-
erize item generation directly for use in adaptive testing has
revitalized this area of research.

Different types of item generation have been studied.
One straightforward type is the use of item forms or shells
in which existent items of superior quality are selected and
some of their elements are replaced by large sets, from
which elements are randomly substituted. Another ap-
proach is to clone items using transformation rules (e.g.,
linguistic rules or rules that are content based). Research in
the area of rule-based item generation is rapidly growing

Figure 2. Graphical illustration of constrained adaptive
testing using a shadow-test approach.
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because of its promising profits. For a review of the tech-
niques that are currently under investigation, see Irvine and
Kyllonen (2002). A recent example of a successful appli-
cation, which allows the generation of numerous items for
the testing of figural reasoning from a limited set of rules,
is presented in Freund, Hofer, and Holling (in press).

However, a problem not yet addressed by rule-based
item generation is the costs of item pretesting. In fact, these
costs are much higher that those of just writing the items;
they involve extensive item review, empirical pretesting,
and statistical item calibration. It would be naive to think
that these activities could be skipped because the parame-
ters of an item can be used automatically for any other item
generated from it. The general impression from empirical
research into this issue is that the differences between item
parameter estimates are much smaller within item families
than between families, but that they are still large enough
to not ignore them. For a graphical impression of the typical
variation between the item parameters in a pool with fam-
ilies of items generated from a small set of parent items or
item rules, see Figure 3.

Substantial savings on item calibration are possible
when the selection of the items follows a two-stage proce-
dure in which (i) a family is identified that is optimal at the
current estimate of ® and (ii) an item is randomly generated
from this family. The first step exploits the between-family
differences in the pool and still allows us to be adaptive.
The second step randomizes with respect to the generally
much smaller within-family differences.

This type of item selection is facilitated by the replace-
ment of the response model by a model with a two-level
structure. Suppose we have items families f = 1,. . .,F. The
items from family f are denoted as if = 1,. . .,If. For the Rasch
model in ((1)), an appropriate two-level structure would be

(2)

with

(3)

That is, each family f has a normal distribution of the dif-
ficulty parameter with its own mean μf and variance σf

2.

The differences between the families are captured by the
parameters μf, the differences within the families by the
parameters σf

2.
Under this model, item calibration can be replaced by

family calibration, that is, estimation of the family param-
eters from samples of items drawn from them. Once these
parameters have been estimated with enough precision, an
adaptive test from the pool can be run by choosing each
next family to be optimal at the current ® estimate and sam-
pling an item from the family. The savings in item calibra-
tion are, thus, directly related to the difference between the
size of the sample of items in the calibration and the total
number of distinct items that can be generated from the
families.

The idea of modeling item pools as a collection of fam-
ilies of items was presented for the more general three-pa-
rameters logistic in Glas and van der Linden (2001). Bayes-
ian estimation of the same model was also studied in Sin-
haray, Johnson, and Williams (2003). A study in which the
family model was applied to adaptive testing is reported in
Glas and van der Linden (2003).

It is important to notice that this type of two-stage item
selection is different from that in the shadow-test approach.
In constrained adaptive testing, the two need to be com-
bined: the optimization model for the shadow test is then
for the choice of the item families in the test. Once a shad-
ow test is selected, the best family is picked from the free
families in it. Finally, an item is randomly sampled from
this best family.

Multidimensional Adaptive Testing

Most IRT models have been developed for the measure-
ment of unidimensional abilities and knowledge domains.
But recently the interest has shifted to multidimensional
models as well. One reason for this shift is that, although
such models were already proposed in the 1960s, they were
always hard to use in operational testing because of their
statistical intractability. But thanks to recent advances in
statistics and the availability of plentiful cheap computer
power, the situation has changed dramatically and routine
use of multidimensional IRT has now become feasible.

We expect multidimensional response models to be par-
ticularly useful for adaptive testing. One of the frequent
reasons of a response model showing less than satisfactory
fit is lack of unidimensionality of the ability parameter.
Usual cases are items whose formulation rely too heavily
on language or analytic reasoning skills, whereas the focus
is on the measurement of a more substantive ability. In tra-
ditional pretesting of a new linear test form, generally more
items are pretested than needed. And if the assumption of
unidimensionality is violated for a small minority of the
items, a standard solution is to ignore them and assemble
the form from the rest of the items. If the number of viola-
tions is large, it is sometimes possible to detect a simple

Figure 3. Graphical example of a pool of item families for
adaptive testing.
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structure and reorganize the test as a battery of smaller uni-
dimensional tests (multidimensional ability vs. multiple
unidimensional abilities; see the next section).

We expect the problem of multidimensionality to be
more dominant for adaptive testing because of the necessity
of much larger numbers of items required to show a satis-
factory fit to the response model. (One exception might be
the rule-based generation of item pools discussed in the
previous section, which can be expected to result into more
homogeneous item pools than pools left entirely to the cre-
ativity of a team of different item writers. But more prac-
tical experience is needed to pass judgment on this issue.)
If multidimensionality appears to be unavoidable, the only
route left is to model it and adjust the adaptive testing al-
gorithm for use with the multidimensional model.

This view of multidimensional response modeling as a
last resort when violations of unidimensionality become
dominant is too negative. A more positive motivation is the
recent interest in performance-based testing, with its em-
phasis on the testing of complex skills in a real-world con-
text. The testing of such performances should always be
approached from a multidimensional point of view. And if
the goal is diagnosis and each of the dimensions should be
tested carefully, the choice of an adaptive format seems
obvious.

The change from unidimensional to multidimensional
adaptive testing involves an important modification of the
item-selection criterion. For instance, for item selection
based on item information functions (see Figure 2), the
presence of more than one parameter to be estimated during
the test complicates the item-selection process consider-
ably because the information functions are replaced by in-
formation matrices of size p × p (with p the number of item
parameters), which not only reflects the accuracy of the
estimates but also their correlations. Alternatively, in a
Bayesian context, the item-selection criterion generalizes
to that for a multivariate posterior distribution of the ability
parameters.

How to reduce these multivariate entities to a single cri-
terion depends on the goal of the test. For a two-dimension-
al test, three different goals should be distinguished: (i)
both ability parameters are intentional and should be esti-
mated accurately, (ii) only one parameter is intentional and
the other is a nuisance parameter, and (iii) the interest is
only in a combination of the two parameters, such as their
(weighted) mean. Rules for item selection and item pool
assembly for these different goals can be derived from the
optimal design principle used in statistics to optimize ex-
perimental designs or sampling procedures. Applications
are given in Mulder and van der Linden (2007) and van der
Linden (2005, chap. 9). One optimal design criterion –
known as the criterion of D-optimality – has been studied
for adaptive testing by Luecht (1996) and Segall (1996).
Alternatively, we could follow an entirely different proce-
dure and use the Kullback-Leibler measure to maximize
the distance between the joint sampling distribution of the
ability estimates before and after the selection of the item

(or between the posterior distributions of the ability param-
eters). For this idea, see Mulder and van der Linden (2008)
and Veldkamp and van der Linden (2002).

Adaptive Use of Test Batteries

When a linear test becomes adaptive, the savings in testing
time can be used to shorten the length of the test or to in-
crease the accuracy of the scores. These options are helpful
to testing programs that struggle with limitations in effi-
ciency. A prominent example are test batteries that are to
be administered in a single session but for which the burden
of test taking is too large. Examples are the use of testing
batteries for vocational counseling or diagnosis for reme-
dial instruction. For both, the goal is to produce profiles of
scores for individual test takers. When the profiles are used
for high-stakes decision making, the accuracy of their in-
dividual scores should be as high as for a regular test. But
it is generally impossible to administer a battery of, say,
five tests of regular lengths. One of the first applications of
adaptive testing was to solve this dilemma between accu-
racy and total testing time for test batteries (Brown &
Weiss, 1977). As a rule of thumb, an adaptive test needs
some 40–50% of the items to reach the same level of ac-
curacy as a linear test. This gain in efficiency allows us to
spend, for example, 1 h of testing time on a battery of five
10-item adaptive achievement tests for use in remedial
teaching and be equally efficient as a battery of five linear
tests of some 20–24 items.

The efficiency can be increased further by optimizing
the order in which the tests are administered to the individ-
ual test takers. Obviously, the best strategy is to choose the
order adaptively: The first test is then selected to be optimal
over initial estimates of each of the abilities measured by
the tests. After the first test is completed, the second test is
chosen to be optimal over the predicted abilities on the re-
maining tests given the test taker’s responses on the first
test, and so on.

The reason why the efficiency of an adaptively se-
quenced test battery can be expected to be profitable re-
sides in the typical pattern of convergence of ability esti-
mates on an adaptive test. Due to the randomness of the
responses, the estimates are likely to wander around for a
while early in the test and convergence only when the re-
sponses begin to show an obvious trend. The use of the
information from the responses on the previous tests gives
the next test a much better start than the typical choice of
an arbitrary initial value ability estimate somewhere in the
middle of the scale.

A natural statistical framework for adaptive sequencing
of test batteries is multilevel IRT. The framework should
then consists of a distinct response model for each of the
item pools for the battery as first-level models in combina-
tion with a second-level model for the joint distribution of
their ability parameters for the population of test takers. For
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the Rasch model in (1) and a multivariate normal distribu-
tion for abilities ® = (®1,. . .,®H) , the framework becomes

(4)

with

(5)

It is important to notice the differences between this frame-
work and the multilevel structure in (2)–(3), which had a
distinct model for each item family and a second-level dis-
tribution of their difficulty parameters. Also, this case of
multiple unidimensional adaptive tests should not be con-
fused with that of multidimensional adaptive testing in the
previous section.

The multilevel structure in (4)–(5) lends itself perfectly
for an implementation of adaptive test sequencing using an
empirical Bayes approach: The items in the first test are
then selected using updates of the posterior distribution of
its ability parameter. At the end of the test, the responses
are used to calculate the posterior predictive distribution of
the abilities on each of the remaining tests in the battery
and the test with the most informative predictive distribu-
tion is selected. This distribution is subsequently used as a
prior distribution for the selection of the first item in the
new test. The selection of later tests and items is analogous.

The approach is empirical because the second-level
model for the distribution of the abilities is estimated from
actual test data during item calibration. For more details of
this adaptive sequencing of a test battery and empirical re-
sults both for batteries with constrained and unconstrained
adaptive tests, see van der Linden (2007). Generally, the
gain in efficiency due to the adaptive sequencing is a func-
tion of the pattern of correlations between the abilities mea-
sured by the tests. Real-world test batteries are usually con-
structed to measure a set of related but distinct abilities.
Hence, we expect these correlations to be substantial, and
it would be a waste to ignore the information in them.

Use of Response Times in Adaptive
Testing

In adaptive testing, the response times (RTs) by the test
takers are automatically recorded. Their information can be
explored to improve adaptive testing.

One of the possibilities alluded to earlier is the control
of the degree of the speededness of the test for each indi-
vidual test taker. This control is necessary because test
items vary considerably in the amount of time they take.
Usually, the more difficult items take more time. As a re-
sult, the adaptive algorithm penalizes the more able test
takers by giving them the more time-intensive items. Con-
trol of differential speededness is only possible if we have
an appropriate statistical model for the distributions of the
RTs on the items in the pool.

A moment’s reflection shows that, analogously to a uni-
dimensional IRT model, the RT model should have sepa-
rate parameters for the test taker and the items. An RT mod-
el with this structure is the lognormal model, which postu-
lates the following normal distribution for the logarithm of
the time for a fixed person on an items

(6)

where τ is a parameter for the speed at which the test taker
operates, βi a parameter for the time intensity of item i, and
αi is its discrimination parameter (van der Linden, 2006).
Parameters αi and βi can be estimated from the response
times collected during item pretesting along with the reg-
ular calibration of the item pool. Once these parameters are
known, the RTs for any selection of the items from the pool
can be used to estimate the speed parameter τ for the test
taker.

To control the degree of speededness of an adaptive test,
the test taker’s τ should be estimated from his/her response
times during the test, just as ® is estimated from the re-
sponses. As the item parameters are already known, we can
estimate the RT distributions of the test taker for each of
the remaining items in the pool as soon as we have an es-
timate of the speed parameter. Initially, the estimates of
these distributions are poor but they become quite accurate
toward the end of the test, which is exactly where the de-
gree of speededness of the test becomes critical.

The basic idea is to impose a constraint on the selection
of the items that requires an estimate of the total time on
the remaining items to be no larger than the remaining time
available for the test. It is simple to impose such a con-
straint using the shadow-test approach discussed earlier.
Technical details of the approach and empirical examples
are given in van der Linden (2008a) and van der Linden et
al. (1999).

Another use of the RTs is for the improvement of the
item selection. When the ability of the test takers correlates
with their speed, which typically happens, the RTs contain
valuable information about the test takers’ ability. The in-
formation can be used to accelerate the convergence of the
ability estimates and, hence, of the adaptation of the test.

In a recent study (van der Linden, 2008b), the idea was
executed using a hierarchical framework with the 3PL
model and the RT model in (6) as first-level models and a
second-level model for the joint distribution of ability pa-
rameter ® and speed parameter τ. The framework allows us
to import the information in the RTs in the estimation of ®
in the form of an empirical prior distribution of it. In an
study with simulated data, we found considerable gains of
efficiency even for moderate (positive or negative) corre-
lation between ® and τ. For example, a 10-item adaptive
test with the use of RTs tended to be equally efficient as a
20-item test without the use of them.

The final example of the use of RTs reviewed here is to
detect possible aberrances in adaptive testing due to, for
instance, differentially functioning test items, ambiguous
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instructions, test takers who need other special test accom-
modations, and cheating in the form of answer copying,
item memorization, or item preknowledge. Traditionally
procedures for detecting such behavior focus on unexpect-
ed responses indicative of item- or person-misfit under a
response model that has been shown to fit regular test be-
havior.

There are at least three reasons why a focus on unex-
pected RTs might be more efficient. First, during an adap-
tive test the probabilities for a correct and incorrect re-
sponse converge to a value close to .50. As a result, re-
sponse patterns that would normally be indicative of
aberrances become also indicative of regular test behav-
ior, and any statistical test based on them loses its power.
RTs are insensitive to such effects, and statistical tests
based on them keep their power in adaptive testing. Sec-
ond, RTs are continuous instead of binary and therefore
contain much more information on the size of aberrances.
Third, it is nearly impossible to fake realistic RTs for test
takers who are trying to cheat. RT models with parameter
structures as in (6) allow us to adjust the test takers’ RTs
for their actual speed and to check if the results follow
the pattern of time intensities for the items in their test.
Even for sophisticated cheaters, it will be impossible to
find out during the adaptive test what a regular pattern
would be, because they would have to do so while their
time on the items elapses. For technical details on RT-
based detection of aberrances in adaptive testing, see van
der Linden and Guo (2008).

Concluding Remarks

This review shows that the original idea of adaptive testing
as simply picking the best item when a new ability estimate
becomes available has become somewhat naive. To main-
tain the validity of the test, items selection has to be con-
strained considerably, and we may have to deal with com-
plications due to the multidimensionality of the abilities
that are tested. On the other hand, substantial further im-
provements of adaptive testing are possible in the form of
rule-base item generation, adaptive sequencing of test use,
and exploiting the RTs that are recorded during the test.

The new adaptive testing technology that is emerging
has profited much from a decade of pioneering applications
in educational testing. We expect it to develop further when
we learn from applications in psychological testing as well.
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